skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Allen-Waller, Luella"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Climate change threatens symbiotic cnidarians’ survival by causing photosymbiosis breakdown in a process known as bleaching. Direct effects of temperature on cnidarian host physiology remain difficult to describe because heatwaves depress symbiont performance, leading to host stress and starvation. The symbiotic sea anemone Exaiptasia diaphana provides an opportune system to disentangle direct vs. indirect heat effects on the host, since it can survive indefinitely without symbionts. We tested the hypothesis that heat directly impairs cnidarian physiology by comparing symbiotic and aposymbiotic individuals of two laboratory subpopulations of a commonly used clonal strain of E. diaphana, CC7. We exposed anemones to a range of temperatures (ambient, +2°C, +4°C, +6°C) for 15–18 days, then measured their symbiont population densities, autotrophic carbon assimilation and translocation, photosynthesis, respiration, and host intracellular pH (pHi). Symbiotic anemones from the two subpopulations differed in size and symbiont density and exhibited distinct heat stress responses, highlighting the importance of acclimation to different laboratory conditions. Specifically, the cohort with higher initial symbiont densities experienced dose-dependent symbiont loss with increasing temperature and a corresponding decline in host photosynthate accumulation. In contrast, the cohort with lower initial symbiont densities did not lose symbionts or assimilate less photosynthate when heated, similar to the response of aposymbiotic anemones. However, anemone pHi decreased at higher temperatures regardless of cohort, symbiont presence, or photosynthate translocation, indicating that heat consistently disrupts cnidarian acid-base homeostasis independent of symbiotic status or mutualism breakdown. Thus, pH regulation may be a critical vulnerability for cnidarians in a changing climate. 
    more » « less
  2. The future of coral reefs in a warming world depends on corals’ ability to recover from bleaching, the loss of their symbiotic dinoflagellate algae (Symbiodiniaceae) during marine heatwaves. Heat-tolerant symbiont species can remain in symbiosis during heat stress, but often provide less photosynthate to the host than heat-sensitive species under ambient conditions. Understanding how heat stress changes the dynamics of this tradeoff between stress tolerance and mutualism contribution is crucial for predicting coral success under climate change. To test how symbiont resource allocation affects coral recovery from heat stress, we exposed the coral Montipora capitata hosting either heat-sensitive Cladocopium C31 (C) or heat-tolerant Durusdinium glynnii (D) to heat stress. D regained symbiont density and photochemical efficiency faster after heat treat- ment than C, but symbiont recovery did not restore coral biomass or calcification rates to pre-bleaching levels in the initial recovery period. D populations also contributed less photosynthate to the host relative to C, even during heat stress. Further, higher-density symbiont populations of both species retained more photosynthate than lower-density populations, and corals receiving less photosynthate exhibited reduced calcification rates and lower intracellular pH. This is the first evidence that symbiont density and carbon translocation are negatively related, and the first to establish a link between Symbiodiniaceae carbon translocation and coral cellular homeostasis. Together, these results suggest the energy demand of symbiont regrowth after bleaching reduces their mutualism contribution and can thus delay host recovery. Reestablishing a beneficial endos- ymbiosis imposes additional costs as holobionts overcome stress, and may explain latent mortality among coral populations after alleviation of heat stress in the field. 
    more » « less
  3. Abstract Ocean warming is causing global coral bleaching events to increase in frequency, resulting in widespread coral mortality and disrupting the function of coral reef ecosystems. However, even during mass bleaching events, many corals resist bleaching despite exposure to abnormally high temperatures. While the physiological effects of bleaching have been well documented, the consequences of heat stress for bleaching‐resistant individuals are not well understood. In addition, much remains to be learned about how heat stress affects cellular‐level processes that may be overlooked at the organismal level, yet are crucial for coral performance in the short term and ecological success over the long term. Here we compared the physiological and cellular responses of bleaching‐resistant and bleaching‐susceptible corals throughout the 2019 marine heatwave in Hawai'i, a repeat bleaching event that occurred 4 years after the previous regional event. Relative bleaching susceptibility within species was consistent between the two bleaching events, yet corals of both resistant and susceptible phenotypes exhibited pronounced metabolic depression during the heatwave. At the cellular level, bleaching‐susceptible corals had lower intracellular pH than bleaching‐resistant corals at the peak of bleaching for both symbiont‐hosting and symbiont‐free cells, indicating greater disruption of acid–base homeostasis in bleaching‐susceptible individuals. Notably, cells from both phenotypes were unable to compensate for experimentally induced cellular acidosis, indicating that acid–base regulation was significantly impaired at the cellular level even in bleaching‐resistant corals and in cells containing symbionts. Thermal disturbances may thus have substantial ecological consequences, as even small reallocations in energy budgets to maintain homeostasis during stress can negatively affect fitness. These results suggest concern is warranted for corals coping with ocean acidification alongside ocean warming, as the feedback between temperature stress and acid–base regulation may further exacerbate the physiological effects of climate change. 
    more » « less